进程池和multiprocess的Pool模块

进程池

进程池的概念,定义一个池子,在里面放上固定数量的进程,有需求来了,就拿一个池中的进程来处理任务,等到处理完毕,进程并不关闭,而是将进程再放回进程池中继续等待任务。如果有很多任务需要执行,池中的进程数量不够,任务就要等待之前的进程执行任务完毕归来,拿到空闲进程才能继续执行。也就是说,池中进程的数量是固定的,那么同一时间最多有固定数量的进程在运行。这样不会增加操作系统的调度难度,还节省了开闭进程的时间,也一定程度上能够实现并发效果。

概念介绍

Pool([numprocess  [,initializer [, initargs]]]):创建进程池

1 numprocess:要创建的进程数,如果省略,将默认使用cpu_count()的值
2 initializer:是每个工作进程启动时要执行的可调用对象,默认为None
3 initargs:是要传给initializer的参数组

主要方法

1 p.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。
2 '''需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从
不同线程调用p.apply()函数或者使用p.apply_async()'''
3 p.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。
4 '''此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传
给callback。callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。'''
5 p.close():关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成
6 P.jion():等待所有工作进程退出。此方法只能在close()或teminate()之后调用

其他方法(了解)

1 方法apply_async()和map_async()的返回值是AsyncResul的实例obj。实例具有以下方法
2 obj.get():返回结果,如果有必要则等待结果到达。timeout是可选的。如果在指定时间内还没有到达,将引发一场。如果
  远程操作中引发了异常,它将在调用此方法时再次被引发。
  3 obj.ready():如果调用完成,返回True
  4 obj.successful():如果调用完成且没有引发异常,返回True,如果在结果就绪之前调用此方法,引发异常
  5 obj.wait([timeout]):等待结果变为可用。
  6 obj.terminate():立即终止所有工作进程,同时不执行任何清理或结束任何挂起工作。如果p被垃圾回收,将自动调用此
  函数

同步和异步

进程池的同步调用

import osimport timefrom multiprocessing import Pool
def work(n):
    print('{} run'.format(os.getpid()))
    time.sleep(2)
    return n**2
if __name__ == '__main__':
    p = Pool(3)  # 进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
    res_1 = []
    for i in range(5):
        # 同步调用,直到本次任务执行完毕拿到res,等待任务work执行的过程中可能有阻塞也可能没有阻塞
        # 但不管该任务是否存在阻塞,同步调用都会在原地等着
        res = p.apply(work, args=(i,))
    print(res_1)

执行结果

8440 run

13340 run

5636 run

8440 run

13340 run

[]

进程池的异步调用

import osimport timeimport randomfrom multiprocessing import Pool

def work(n):
    print('{} run'.format(os.getpid()))
    time.sleep(random.random())
    return n**2
    
    
    
if __name__ == '__main__':
    p = Pool(3)
    res_l = []
    for i in range(5):
        res = p.apply_async(work, args=(i,))
        # 异步运行,根据进程池中有的进程数,每次最多3个子进程在异步执行
        # 返回结果之后,将结果放入列表,归还进程,之后再执行新的任务
        # 需要注意的是,进程池中的三个进程不会同时开启或者同时结束
        # 而是执行完一个就释放一个进程,这个进程就去接收新的任务。
        res_l.append(res)
    # 异步apply_async用法:如果使用异步提交的任务,主进程需要使用jion,等待进程池内任务都处理完,然后可以
    # 用get收集结果
    # 否则,主进程结束,进程池可能还没来得及执行,也就跟着一起结束了
    p.close()
    p.join()
    for res in res_l:
        # 使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无
        # 需get
        print(res.get())

执行结果

2680 run

9796 run

9076 run

9076 run

2680 run

0

1

4

9

16

进程池的异步调用

例2

import timeimport randomfrom multiprocessing import Pool
def func(i):
    print('func%s' % i)
    time.sleep(random.randint(1,3))
    return i**2
if __name__ == '__main__':
    p = Pool(5)
    ret_l = []
    for i in range(15):
        # p.apply(func=func,args=(i,))    # 同步调用
        ret = p.apply_async(func=func,args=(i,))# 异步调用
        ret_l.append(ret)
    for ret in ret_l : print(ret.get())
    # 主进程和所有的子进程异步了

执行结果为

func0

func1

func2

func3

0

func4

1

4

9

16

进程池版socket并发聊天

server端代码

#!/usr/bin/env python
# coding: utf-8#Pool内的进程数默认是cpu核数,假设为4(查看方法os.cpu_count())
#开启6个客户端,会发现2个客户端处于等待状态
#在每个进程内查看pid,会发现pid使用为4个,即多个客户端公用4个进程
from socket import *from multiprocessing import Poolimport os

server=socket(AF_INET,SOCK_STREAM)
server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server.bind(('127.0.0.1',8080))
server.listen(5)
def talk(conn):
    print('进程pid: %s' %os.getpid())
    while True:
        try:
            msg=conn.recv(1024)
            if not msg:break
            conn.send(msg.upper())
        except Exception:
            break
            
if __name__ == '__main__':
    p=Pool(4)
    while True:
        conn,*_=server.accept()
        p.apply_async(talk,args=(conn,))
        # p.apply(talk,args=(conn,client_addr)) #同步的话,则同一时间只有一个客户端能访问

client端代码

from socket import *
client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080))
while True:
    msg=input('>>: ').strip()
    if not msg:continue

    client.send(msg.encode('utf-8'))
    msg=client.recv(1024)
    print(msg.decode('utf-8'))

发现:并发开启多个客户端,服务端同一时间只有4个不同的pid,只能结束一个客户端,另外一个客户端才会进来

回调函数

需要回调函数的场景:进程池中任何一个任务一旦处理完了,就立即告知主进程:我好了额,你可以处理我的结果了。主进
程则调用一个函数去处理该结果,该函数即回调函数

我们可以把耗时间(阻塞)的任务放到进程池中,然后指定回调函数(主进程负责执行),这样主进程在执行回调函数时就
省去了I/O的过程,直接拿到的是任务的结果。

使用多进程请求多个url来减少网络等待浪费的时间

import osfrom urllib.request 
import urlopenfrom multiprocessing
import Pool
def get_url(url):
    print('-->',url,os.getpid())
    ret = urlopen(url)
    content = ret.read()
    return url

def call(url):
    # 分析    
    print(url,os.getpid())
    
    
if __name__ == '__main__':
    print(os.getpid())
    l = [
        'http://www.baidu.com',  # 5
        'http://www.sina.com',
        'http://www.sohu.com',
        'http://www.sogou.com',
        'http://www.qq.com',
        'http://www.bilibili.com',  #0.1
    ]
    p = Pool(5)   # count(cpu)+1
    ret_l = []
    for url in l:
        ret = p.apply_async(func = get_url,args=[url,],callback=call)
        ret_l.append(ret)
    for ret in ret_l : 
        ret.get()# 回调函数
# 在进程池中,起了一个任务,这个任务对应的函数在执行完毕之后
# 的返回值会自动作为参数返回给回调函数
# 回调函数就根据返回值再进行相应的处理
# 回调函数 是在主进程执行的

执行结果

10316

--> http://www.baidu.com 13280

--> http://www.sina.com 1244

--> http://www.sohu.com 16204

--> http://www.sogou.com 1224

--> http://www.qq.com 16140

--> http://www.bilibili.com 13280

http://www.baidu.com 10316

http://www.qq.com 10316

http://www.sohu.com 10316

http://www.sina.com 10316

http://www.bilibili.com 10316

http://www.sogou.com 10316